SICPの 2.3.2 Example: Symbolic Differentiation の The differentiation program with abstract data あたりを Python でやってみた
scheme
;2.3.2 Example: Symbolic Differentiation ;The differentiation program with abstract data (define (deriv exp var) (cond ((number? exp) 0) ((variable? exp) (if (same-variable? exp var) 1 0)) ((sum? exp) (make-sum (deriv (addend exp) var) (deriv (augend exp) var))) ((product? exp) (make-sum (make-product (multiplier exp) (deriv (multiplicand exp) var)) (make-product (deriv (multiplier exp) var) (multiplicand exp)))) (else (error "unknown expression type -- DERIV" exp)))) ;Representing algebraic expressions (define (variable? x) (symbol? x)) (define (same-variable? v1 v2) (and (variable? v1) (variable? v2) (eq? v1 v2))) (define (make-sum a1 a2) (list '+ a1 a2)) (define (make-product m1 m2) (list '* m1 m2)) (define (sum? x) (and (pair? x) (eq? (car x) '+))) (define (addend s) (cadr s)) (define (augend s) (caddr s)) (define (product? x) (and (pair? x) (eq? (car x) '*))) (define (multiplier p) (cadr p)) (define (multiplicand p) (caddr p)) (deriv '(+ x 3) 'x) ;(+ 1 0) (deriv '(* x y) 'x) ;(+ (* x 0) (* 1 y)) (deriv '(* (* x y) (+ x 3)) 'x) ;(+ (* (* x y) (+ 1 0)) (* (+ (* x 0) (* 1 y)) (+ x 3)))
python
#2.3.2 Example: Symbolic Differentiation #The differentiation program with abstract data def deriv(exp, var): if isinstance(exp, int): return 0 if variable_q(exp): if same_variable_q(exp, var): return 1 return 0 if sum_q(exp): return make_sum(deriv(addend(exp), var), deriv(augend(exp), var)) if product_q(exp): return make_sum(make_product(multiplier(exp), deriv(multiplicand(exp), var)), make_product(deriv(multiplier(exp), var), multiplicand(exp))) else: print "unknown expression type -- DERIV %s" % exp def variable_q(x): return isinstance(x, str or int) def same_variable_q(v1, v2): return variable_q(v1) and variable_q(v2) and v1 == v2 def make_sum(a1, a2): return ['+', a1, a2] def make_product(m1, m2): return ['*', m1, m2] def sum_q(x): return isinstance(x, list) and x[0] == '+' def addend(s): return s[1] def augend(s): return s[2] def product_q(x): return isinstance(x, list) and x[0] == '*' def multiplier(p): return p[1] def multiplicand(p): return p[2] print deriv(['+', 'x', 3], 'x') #['+', 1, 0] print deriv(['*', 'x', 'y'], 'x') #['+', ['*', 'x', 0], ['*', 1, 'y']] print deriv(['*', ['*', 'x', 'y'], ['+', 'x', 3]], 'x') #['+', ['*', ['*', 'x', 'y'], ['+', 1, 0]], ['*', ['+', ['*', 'x', 0], ['*', 1, 'y']], ['+', 'x', 3]]]
なんかおかしいかも。symboleあたりこの認識でいいのかしらん(´・ω・`)?
結果が見づらいから Scheme 風に表示してみた
def like_a_scheme_str(deriv): s_deriv = str(deriv) r_str = [["[","("],["]",")"],[",",""],["'",""]] for s in r_str: s_deriv = s_deriv.replace(s[0], s[1]) return s_deriv print like_a_scheme_str(deriv(['+', 'x', 3], 'x')) print like_a_scheme_str(deriv(['*', 'x', 'y'], 'x')) print like_a_scheme_str(deriv(['*', ['*', 'x', 'y'], ['+', 'x', 3]], 'x'))
結果
(+ 1 0) (+ (* x 0) (* 1 y)) (+ (* (* x y) (+ 1 0)) (* (+ (* x 0) (* 1 y)) (+ x 3)))
OK牧場(゚Д゚)b
やり忘れてたコードを少々追加(´・ω・`)
scheme
(define (make-sum a1 a2) (cond ((=number? a1 0) a2) ((=number? a2 0) a1) ((and (number? a1) (number? a2)) (+ a1 a2)) (else (list '+ a1 a2)))) (define (=number? exp num) (and (number? exp) (= exp num))) (define (make-product m1 m2) (cond ((or (=number? m1 0) (=number? m2 0)) 0) ((=number? m1 1) m2) ((=number? m2 1) m1) ((and (number? m1) (number? m2)) (* m1 m2)) (else (list '* m1 m2)))) (deriv '(+ x 3) 'x) ;1 (deriv '(* x y) 'x) ;y (deriv '(* (* x y) (+ x 3)) 'x) ;(+ (* x y) (* y (+ x 3)))
python
def make_sum(a1, a2): if equal_number_q(a1, 0): return a2 if equal_number_q(a2, 0): return a1 if isinstance(a1, int) and isinstance(a2, int): return a1 + a2 else: return ['+', a1, a2] def equal_number_q(exp, num): return isinstance(exp, int) and exp == num def make_product(m1, m2): if equal_number_q(m1, 0) or equal_number_q(m2, 0): return 0 if equal_number_q(m1, 1): return m2 if equal_number_q(m2, 1): return m1 if isinstance(m1, int) and isinstance(m2, int): return m1 * m2 else: return ['*', m1, m2] print like_a_scheme_str(deriv(['+', 'x', 3], 'x')) print like_a_scheme_str(deriv(['*', 'x', 'y'], 'x')) print like_a_scheme_str(deriv(['*', ['*', 'x', 'y'], ['+', 'x', 3]], 'x')) #1 #y #(+ (* x y) (* y (+ x 3)))